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Abstract--The present study is concerned with estimating the hydrodynamic interactions between a small 
droplet and a much larger fluid drop when both drops are translating through an otherwise quiescent fluid. 
The method of solution is a matched asymptotic expansion involving resolution of the local undisturbed 
flow produced by the motion of the large drop into component flows that provide the far-field boundary 
conditions for calculating the disturbance flows produced by the small droplet. In the limit of very small 
size ratio, the surface of the large drop appears as locally planar. The theory yields a complete trajectory 
equation including a proper description of the effect of hydrodynamic interactions between the two 
neighboring drops. The trajectory of the small droplet on approaching the large drop does not deviate 
significantly from the streamlines of the undisturbed flow until it comes within range of the hydrodynamic 
repulsion from the surface of the large drop. The magnitude of hydrodynamic repulsion becomes weaker 
as the viscosity of the droplet is reduced, and this effect is a strong function of the separation distance 
from the surface of the large drop. 
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1. I N T R O D U C T I O N  

In this paper we consider the dynamics of a small fluid particle which moves freely in the slow 
streaming motion past a nearby much larger drop, for the general case in which all three fluids 
are different, see figure 1. Interest in this problem stems mainly from its role as a simple model 
problem relevant to the collection of very small (solid or fluid) particles at the surface of larger 
bubbles or drops in flotation processes (cf. Goldman et al. 1967a, b; Goren & O'Neill 1971; 
Spielman 1977; Dukhin & Rulev 1977; Stoos 1987; Stoos & Leal 1989; and references therein). It 
is also relevant to some aspects of drop coalescence (cf. Burrill & Woods 1973; Jones & Wilson 
1978; Chen et al. 1984). 

Nearly all previous attempts to incorporate hydrodynamic interactions into particle trajectory 
calculations for the flotation problem have relied on solutions for two rigid, no-slip spheres. The 
majority have followed the formulation of Goren & O'Neill (1971), in which it is assumed that the 
ratio of radii is a/A ,~ 1, and thus rely on solutions for the interactions between a rigid sphere and 
a rigid plane wall (e.g. Spielman & Fitzpatrick 1973; Prieve & Ruckenstein 1974; Derjaguin et al. 
1976). A more accurate formulation for two solid spheres of arbitrary size ratio has recently become 
possible, due to Jeffery & Onishi (1984), who developed comprehensive results for the full resistance 
and mobility tensors. Nevertheless, and in spite of the fact that very small bubbles tend to rise with 
the same terminal velocity as a solid sphere of the same size and density, there are many indications 
that the collector bubble does not behave as a solid sphere in the flotation process, especially in 
the final stages of the particle capture process. Among these are the observed mobility of particles 
that have been captured at the surface of such a bubble, and the expected deformation of the 
interface when the separation distance is small. One may also cite the measurements by Yuu & 
Fukui (1981) of the drag coefficient for a sphere approaching a fluid interface which showed 
significant deviation from the case of a sphere moving toward a solid wall. Finally, in the case of 
flotation or liquid-solid extraction processes (Puddington & Sparks 1975), where a liquid drop is 
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Figure. 1. Schematic of the problem and the coordinate system. 

used as the collector instead of a bubble, the drop is generally larger than in flotation, and thus 
may not behave as a solid sphere even in isolated motions. 

Although there have been a number of prior studies of the relative motions of two drops in a 
viscous fluid, none is well-suited for use in modeling the hydrodynamic aspects of particle capture 
in flotation (or other) processes where there is a large difference in the size of the particle and the 
collector. The first comprehensive study of the relative motions of two spherical drops was duc to 
Hetsroni & Haber (1978), who used the method of reflections in conjunction with eigenfunction 
expansions in bispherical coordinates to consider two arbitrarily sized but widely separated drops. 
Although this analysis is undoubtedly valuable for many applications, it is not well-suited to the 
case when one of the drops is very much smaller. This is primarily because Hetsroni & Haber (1978) 
considered approximations in which both of the parameters ~ = a/(A + d) and ~ = .4/(A + d) are 
assumed to be asymptotically small (here, d is the separation distance between drops, while a and 
.4 are the two radii). This analysis is best suited to A = O(a), and obviously loses accuracy when, 
as in the present problem, .4 ~> a. This, and the limitation to large separations, are the primary 
factors which diminish the usefulness of Hetsroni & Haber's (1978) theory for application to the 
analysis of particle capture in the flotation process. However, several other restrictions are worth 
noting. First, the relation between the torque on the particle and its translational velocity does not 
reduce to the correct form in the limit as either particle becomes a solid (i.e. the particle translates 
without rotation), and this will affect the predicted trajectory for the small particle. Second, the 
relations describing the various resistance functions in Hetsroni & Haber (1978) are truncated at 
different orders, O(~mfl"), m + n = 3, 4, 5. Further, Stoos' (1987) comparison with the results of 
Jeffery & Onishi (1984)--described below--found that the truncated terms of O(fl") are not small 
and significantly affect the particle trajectory. Finally, Hetsroni & Haber's results are algebraically 
complex, partly because they did not specifically consider the asymptotic limit a/`4 ~ 1 in the 
problem formulation. 

Recently, Fuentes et al. (1988, 1989) reconsidered the same asymptotic expansion scheme 
employed by Hetsroni & Haber (1978), but used fundamental solutions for a point force near 
a spherical drop, e.g. Stokeslets and their higher order moments, to extend the domain of 
applicability from large separations, to include all configurations except nearly touching spheres. 
Although the expansion scheme is best suited to cases where .4 = O(a), as mentioned earlier, 
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Fuentes et al. (1988, 1989) were able to use their general solution in the limit a/d ~ 1 to evaluate 
the mobility function (only) for translation of a spherical drop through a quiescent fluid near a plane 
interface. Their results for this special case are identical to those of Yang & Leal (1990), who used 
the same solution procedure as is followed here. In the present paper, we follow the direct and 
simpler approach [pioneered for two solid spheres by Goren & O'Neill (1971)] of introducing the 
limit a ~ A directly into the formulation, rather than approximating the complete solution of the 
full problem. Apart from the work reported here, there has been no prior analysis that is specifically 
directed at accurate results for hydrodynamic interactions of a very small particle or drop and a 
much larger bubble or drop. 

In the present paper, we calculate trajectories for a very small spherical (solid or fluid) particle 
of radius, a, immersed freely in a slow streaming flow that is created by the motion of a much larger 
spherical fluid collector of radius, A. Following the precedent of Goren & O'Neill (1971), we 
evaluate the purely hydrodynamic interaction between the two neighboring spherical drops by 
constructing a rigorous asymptotic solution for the disturbance flow created by the small fluid 
particle in proximity to the larger drop for the limit 6 ( -  a / A ) ~  1. Since the asymptotic solution 
in this limit is singular, we use the method of matched asymptotic expansions. The outer problem 
corresponds to resolution on the scale, A, in which the small particle to be collected appears only 
as a weak point disturbance very near (or at) the surface of the large drop. The inner problem, on 
the other hand, corresponds to resolution on the scale, a. On this scale, the undeformed surface 
of the large drop appears planar, and the outer flow provides the far-field boundary conditions 
through matching to describe the flow in the vicinity of the small particle. In particular, the outer 
undisturbed flow past the large drop, expanded about the point on the drop surface that is closest 
to the particle, contributes uniform, linear, quadratic and higher order flows as the far-field 
boundary conditions for the inner problem. In the present theory, we neglect deformation of the 
large drop both on the outer and inner scale of resolution. This approximation constitutes a very 
significant simplification because one can then use superposition of the results for the various 
undisturbed outer flow components to construct an analytic expression for the trajectories of 
relative motion. 

We adopt the approach outlined above because it reduces the two-sphere problem to a series 
of problems involving the simpler geometry of a sphere near an infinite plane interface, and thus 
leads to relatively simple and accurate formulae compared to those that can be achieved via 
approximations of the "exact" solutions of the two spherical drop problem. However, in contrast 
to the solid collector case studied by Goren & O'Neill (1971), we must solve a much larger number 
of component problems for the present ease of a fluid collector. Of course, an exact analytic solution 
is possible for each component problem using general eigenfunction expansions in bipolar spherical 
coordinates. However, this would defeat the purpose of Goren & O'Neill's asymptotic formulation 
procedure because the resulting solution forms would be too complex and unwieldy for use in 
trajectory calculations (note that each coefficient corresponding to an eigenfunction would have 
to be determined numerically at all times as the relative position and orientation of the two drops 
change). An attractive alternative which we pursue here is solution of the various component flow 
problems via a particular version of the method of reflections technique that was developed by Lee 
et al. (1979) and Yang & Leal (1990) using the fundamental solutions for point and higher order 
singularities near a plane fluid interface. 

Part of the motivation for the present study is an evaluation of the difference in hydrodynamic 
interactions when the collector is treated as a bubble or drop, rather than as a solid sphere. Another 
motivation is the development of accurate and easily applied approximation techniques for 
evaluation of particle trajectories in the vicinity of a bubble/drop collector. Finally, it is important 
to develop approximation methods that are easily generalizable. For example, Anfruns & Kitchener 
(1977) demonstrated that collection efficiencies may vary greatly for different shape particles, i.e 
rod-like particles vs spherical particles. Therefore, a solution technique that could easily be applied 
to nonspherical particles is needed, and that is true of the method developed here. 

2. PROBLEM FORMULATION 

We begin by considering the governing equations and boundary conditions for two spherical 
drops (which experience hydrodynamic interactions) for buoyancy-driven motions through an 
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otherwise quiescent immisible fluid in an unbounded domain, as shown in figure 1. The three fluids 
are all assumed to be incompressible and Newtonian. The whole motion is further assumed to be 
dominated by viscous and pressure effects, so that the inertial terms in the equations of motion 
can be neglected entirely. In addition, we choose a coordinate reference system with an origin that 
is fixed, for convenience, at point O on the surface of the larger drop, thus translating relative 
to a fixed reference frame with a terminal velocity U = - Ut(sin 0e8 -  cos 0er) in the direction 
opposite to the gravity. We specialize our coordinate system by taking the centers of the two drops 
on the x - z  plane, i.e. the plane of the paper (see figure 1). The coordinate system is fixed on the 
larger-drop surface such that the z-axis points along the line of centers and the y-axis points into 
the plane of the paper, i.e. the base vectors (ez, ex, ey) in this local Cartesian coordinate system are 
identical to the base vectors (er, e0, e,) in spherical polar coordinates, respectively. The orientation 
of the small drop relative to the larger drop can be specified in terms of the angle 0 measured 
between the line of centers (i.e. the z-axis) and the vertical. In order to write the governing 
differential equations and boundary conditions in nondimensional form, we use a characteristic 
length lc and a characteristic velocity uc = U,, where lc will be defined shortly. The stress tensors 
for the three fluids are nondimensionalized using Pc = #2 U,/lc. The position vector at a material 
point, measured relative to the origin, will be denoted as x. With these conventions and 
assumptions, the equations of motion may be written in the familiar form 

V" ui= 0, V . a i = 0 ;  [1] 

with the stress a~ and pressure p~ given by 

a~ = -p~I + #i (Vu, + Vu~) (i = 1, 2 and 3), [2] 
/12 

in which #~ is the viscosity of fluid i and u~ denotes the velocity field in fluid i. The boundary 
conditions in the moving frame of reference are 

u2-+sin 0ex - cos 0ez as Ixl--,<~ [3] 

plus the interface conditions at the surfaces of the two neighboring drops, i.e. continuity of 
tangential velocity and stress, and zero normal velocity. Although the analysis will be carried out 
for two drops, it is convenient to refer to the smaller drop as a "particle" and the larger drop as 
the "drop",  and we will follow this convention in the subsequent portions of the paper. 

The operating characteristics of effluent flotation warrant several approximations that greatly 
simplify the analysis. Because of the very small particles generally encountered in effluent flotation, 
we will consider the asymptotic case in which the particle radius is very much smaller than the 
radius of the collector drop; i.e. ~ = a/A <~ 1. Further, the drop-particle separation, d, is assumed 
to be intermediate between the length scales A and a, so that A >> d > a. Although the method of 
solution that we adopt for the component problems is strictly valid only for d >> a, we will apply 
these solutions to problems where d ~ O(a), and compare with exact solutions where they are 
available as a check on the accuracy of this ad hoc procedure. The particle's disturbance to the 
uniform flow should be small compared to the drop's disturbance, except locally in the vicinity of 
the particle, for the case (a/A) <~ 1. In the region close to the particle, however, the particle's effect 
on the flow obviously cannot be neglected. Since the boundary conditions must be satisfied on the 
particle's surface, the streamlines are different than they would be if the particle were not present. 
This local disturbance flow is significant over a distance from the particle of O(a), but when the 
drop-particle separation is also of O(a), interaction of this disturbance flow with the drop surface 
can significantly alter the particle trajectory. Clearly, the magnitude of this interaction will depend 
on the viscosity of each phase, both through the dependence of the magnitude of the "reflection" 
of the disturbance from the interface, and through the dependence of the form of the streaming 
flow around the drop. 

Therefore, at least two characteristic length scales are involved in this process. The first, a, is 
a measure of the distance over which O(1) variations in the disturbance flow occur because of the 
presence of the particle. We shall call the region where this length scale applies the "inner" region, 
lc = O(a). The second, A, is a measure of the distance over which O(1) variations in the flow occur 
in the "outer" region where l¢ = A, i.e. everything outside the immediate O(a) vicinity of the 
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particle. Hydrodynamic interactions, electroviscous interactions and interface deformation may be 
especially important in the "inner" region. In the present work, we will focus on the hydrodynamic 
interactions. 

The existence of two characteristic length scales and the small parameter 6 = a/A <~ 1 suggests 
the utility of applying the method of matched asymptotic expansions to solve the problem. Thus, if 
we begin with the "outer" region, characterized by the scale A, we may generally expect expansions 
in the following forms for the velocity and stress tensor, both inside and outside the drop: 

= + + + . . .  [41 

and 

O'j "1- 60 ' j  "-{- 6 2~)2) ..{_ . . . ,  [5] ~j  _____ ~(0) ~(I) 

where ,,- denotes the variable in the outer region, and the subscript j is taken to be 1 inside the 
drop and 2 outside the drop. The first terms in these expansions represent the "undisturbed" 
Hadamard-Rybczynski solution for streaming flow past the large drop, in the complete absence 
of the small particle, which appears from this outer view simply as a point force located on the 
surface of the drop. Subsequent terms represent the disturbance of the outer flow due to the 
particle. 

In order to determine which of the terms in these expansions are expected to be nonzero in the 
limit 6 ~0,  we can api~ly a simple force balance to show that the disturbance flow due to the small 
particle is actually negligible at the first several orders of approximation in the outer region, relative 
to the undisturbed (Hadamard-Rybczynski) flow produced by the larger drop. The balance 
between the force acting on the fluid because of the buoyancy of the particle and the hydrodynamic 
force exerted by the fluid on the particle is given by 

-- P2)g "31- 12Ut A [_ ( e 2 "  rip) ~na3(p3 dS 0. [6] 
p 

Here p/is the density of fluid j, Sp indicates that the integration is to be performed over the surface 
of the particle, np is the unit normal to the particle surface and dS is a nondimensionalized 
differential surface element. Similarly, for the large drop, 

4 n a 3 ( p l  - -  P2)g + ~Uth ~Sa ~2" nd dS = 0, [7] 

where Sd indicates integration over the surface of the drop and nd is the unit normal to the drop 
surface. The ratio of the force exerted on the fluid by the small particle relative to that by the 
larger drop is therefore 

Fp = a3(p3 -- P2) 
0 ( 6  [8] 

Fd A 3 ( p l  - -  P2)  

Thus, to 0(63 ) the force exerted by the particle on the fluid is negligible in its effect on the flow 
in the "outer" region so that, at least to O(62), the flow in the "outer" region should reduce to 
streaming flow around a drop with no particle present. Thus, the Hadamard-Rybczynski solution 
u~R(j = I, 2) provides the velocity fields inside ( j  = 1) and outside (j  = 2) the drop for the "outer" 
region, through terms of 0(62). 

Now the inner problem must be considered where the characteristic length scale is lc = a. 
Since we are interested in the case for d ,~ O(a), where hydrodynamic interactions play a role, 
the "inner" region is assumed to be composed of sections both inside and outside the drop. 
Analogous to [4] and [5], the following "inner" domain velocity and stress tensor expansions are 
assumed: 

and 

uj = 6 u ? ) +  + . . .  

aj-- + + + . . . .  

Again, we denote the region inside the large drop as j = 1, and that outside as j = 2. 

[9] 

[lOl 
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The boundary conditions must also be arranged into a suitable form so that the terms at O(1), 
0(6)  and so forth can be isolated. To accomplish this, we note that the equation for the surface 
of the drop in terms of inner variables is 

[11] 

This yields the following asymptotic expression for the normal to the drop surface: 

nd= e~ + 6(xex + yey) -- ½52(x 2 + y2)e z + 0(63). [12] 

Then the kinematic condition on the drop surface becomes 

n. = u? 'ez  + 6 [xu?  • + y u ?  • + u ? ' e A  

+ 62[ - -  l ( x  2 + y2)n}°) • e z + xn} I)• e x + yn} 1). ey + u}2) • ez] 

+0(63  ) = 0  at z = s ,  [13] 

where z --s  corresponds to the drop surface, which, according to [11], is 

s = -½6(x 2 + y2) + 0(63). [141 

The right-hand side of [13] contains the parameter 6 both explicitly and implicitly, since all the 
velocities are evaluated at z = s, which is itself a function of 6. As in Van Dyke (1975), we perform 
a "domain perturbation" to remove the implicit dependence on the small parameter. This consists 
of utilizing a Taylor series expansion to obtain a boundary condition on the plane z = 0, which 
is asymptotically equivalent to the boundary condition given by [13] on the drop surface [14]. 
A Taylor series expansion for nj .n  d about z = 0 yields 

(uj. na)~=, = ~}o)• e~ + 6 xu} °). ex + yuJ °)" ey + u} ~)" e~ - ½(x z + y2) 8z (u)°) "e~) 

+ 62[u'~) • e, + xu'" e~ + yu' '' ' 2 ~ ] • . % - ~ ( x  +y2)  (u~).ez) +O(63) at z = 0 .  [15] 

Note that the 0(6) contribution to the normal velocity at z = s involves a z-derivative of the O(1) 
component u}°).e, evaluated at z = 0. Similar equations can be easily derived for the other 
boundary conditions, i.e continuity of velocity and tangential stress on the drop surface. Since the 
drop is treated as spherical in the present analysis, the normal stress balance is not used. On the 
small particle surface, the boundary conditions to be satisfied are continuity of tangential velocity 
and stress and zero normal velocity if the particle is a fluid drop rather than the no-slip condition 
for a solid particle• 

The requirement that the "inner" solution match with the "outer" solution in the overlap region 
provides the final boundary conditions, i.e. 

lim uj.~lim fij. [16] 
Ixl~oe tiq~0 

To utilize these matching conditions, the form of the loading order approximation to the solution 
in the "outer" region is determined for l i I--,0, via a Taylor series expansion of the Hadamard-  
Rybczynski solution, U~ R (j  = 1, 2), around the point i = 0. The result, outside the drop, in terms 
of inner variables is 

1 
W(x) = U~(O) + 6x. VW~(O) + ~ 62xx:VVU~"~(O) + 0(6 ~) 

sin 0 f cos 0 sin 0 ) 
- 2(i-~--)~) ex+ 6 " ~2(1 +2) (xex+y%-zze~)-~ 2(1 + 2 )  [(1 + 32)zex-xe~] 

cos 0 sin 0 
+ 6 2 .  c o s 0 2 -  3 2 2  1 + 2  (xzex+yzey-zZe~)-- i --~(x2+y2)e~-~ 4(1 + 2 - ~  [(1 + 32)Y2 

sin 0 - 32)x2ex + 2xyey 2(2 32)XZez]~ + 0(63) [17] - (2 + 92)z~]e~ 4(1 + 2) [(1 - - 
3 
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in terms of the local Cartesian coordinates x - - (x ,y ,  z) scaled with the inner scale, a. Here, 
2 -/~//~2 is the viscosity ratio of the large drop relative to the suspending fluid, and U~ R is the 
Hadamard-Rybczynski solution in fluid 2 for streaming flow past the larger drop. Similarly, for 
the "outer" region, the flow inside the large drop is expanded in a Taylor series around the origin, 
and expressed in terms of inner variables: 

sin0 I cos0 sinO (4zex_xe~) ] 
U~(x) = 2(1 + 2------~ ex + 6 .  2(1 + 2 - - - - ~  (xex + yey - 2zez) + 2(1 + 2 ~ - - ~  

.q_62. I COS0 (xze~+yzey 2 cos0 2(1 + 2) -- z ez) -- ~ (x z + y2)e~ 
L. 

sin 0 sin 0 (x2e~ - xyey - xze~) 1 + 0(63). [18] + ~ (y2 + z2)e~ + 2(1 + 2-------~ 

In [17] and [18] the superscript oo denotes the velocity field at Ix[--*oo. The terms of O(1), in [17] 
and [18] represent a uniform streaming flow with the same velocity components as the local velocity 
of the outer flow solution at the origin, O, on the interface of the larger drop, i.e. the relative 
velocity of the Hadamard-Rybczynski solution. The remaining terms of O(6) and 0(62) consist 
of several linear shear and extensional flows, and flows with various types of quadratic dependence 
on spatial position, all with a stagnation point at the origin, see figure 2. We have already explained 
that corrections in the outer flow solution due to the disturbance produced by the particle will not 
occur until 0(63), but we shall also see that this is true during the course of the analysis below. 

It can be expected from [17] and [18] that the trajectories for a small (rigid or fluid) particle in 
the presence of a nearby larger drop should be qualitatively different from those obtained in earlier 
work by Goren & O'Neill (1971) on particle motion relative to a larger no-slip collector sphere. 
In the later case (i.e. 2 ~ oo), the leading term in the local Taylor-series approximation to the 
undisturbed flow around the no-slip collector sphere can be seen from [17] to be a simple shear 
flow of O(6) parallel to the collector surface with motion normal toward the surface appearing as 

(a) 

(d) ./ 

(c) 

(e)  .} ( f )  

\ 
Figure. 2. Components of local undisturbed flow: (a) uniaxial axisymmetric straining flow, U~ = E.  x; 
(b) linear shear flows parallel and perpendicular to the x - y  plane, U~ = F • x; (c) quadratic stagnation 
flow, U ~  = K I ( x z e x  + yze>. - z2ez); (d) axisymmetrie paraboloidal flow, U~ = K 2 ( x  2 + y2)e.; 

(e) quadratic shear flow, U~' = (K3y 2 + K4z2)ez; (f) nonaxisyrnmetric quadratic stagnation flow. 
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a quadratic shear and stagnation flow at 0(62) in agreement with Goren & O'Neill (1971). Thus, 
the particle is transported around a solid collector with a velocity of O(6), and transported toward 
(or away from) the collector with a velocity of O(62). When the collector is afluid drop, the particle 
transport velocity is due to a uniform flow of O(1), while the motion toward (or away from) the 
collector is due to an extensional flow at O(6), as can be seen from [17]. A particle will thus remain 
near a fluid drop for a very much shorter period than it would near a large no-slip sphere, but the 
motion toward (or away from) the fluid drop is also much stronger. It may be expected that these 
differences between a solid no-slip and a fluid collector will have important consequence in the 
trajectories of relative motions. 

The detailed trajectories of relative motion can be derived by solving the inner problem (i.e. the 
problem at the scale a of the small particle), in which we consider the motion of the small particle 
near the interface of the larger drop which appears as locally planar in its undeformed state (cf. 
[15]) with the combined streaming, linear and quadratic flows from the outer flow, [17] and [18], 
imposed via matching as the boundary condition at "infinity", 

u2~U~(x) as Ix] ~oo (outside the large dropf[ 
[19a] f 

ul ~ U ~  (x) as Ix[ -~ oo (inside the large drop). ] 

If the interface is assumed to remain flat (i.e. the disturbance flow associated with the small drop 
produces negligible deformation on the inner scale of resolution), the problem is "linear" and can 
be solved by superposition of the small drop motions associated with each of the streaming, linear 
and quadratic flows in [17] taken separately. The main advantage of the flat, nondeforming 
interface approximation is that analytic equations can be derived for the relative trajectory. As 
indicated in the Introduction we shall approach this problem using the singularity method of Lee 
et al. (1979), who generalized the reciprocal theorem of Lorentz, to derive a general lemma for 
obtaining solutions of Stoke's equations that satisfy continuity of velocity and tangential stress on 
a flat interface, given only an arbitrary solution of Stoke's equations for an unbounded domain with 
no interface. We extend the singularity method of Lee et al. to consider the undisturbed flow past 
the small particle for the asymptotic limit E = (a/d) ~ 1. In this case, it is convenient to solve for 
the disturbance velocity field vj in the inner region due to the presence of the particle, rather than 
directly solving for uj. The boundary condition for the disturbance flow at infinity (i.e. the matching 
condition [19a]) is simply 

v2( = u2 - U ~  ( x ) ) - + 0 ]  
as I x l - , o o .  [19b] 

v~( ut - U ~ ( x ) ) - + 0 ]  

Further, the disturbance flow is required to "cancel" the far-field velocity - U ~  at the surface of 
the small fluid particle. 

For the solution to the disturbance flow, the singularity method can be simplified to the 
superposition of fundamental solutions for a point force (i.e. Stokeslet), a potential dipole and 
higher order singularities (e.g. a stresslet, a rotlet, a potential quadrupole etc.) at the center of the 
small fluid particle. Thus, solutions for the problem are constructed in the following manner. First, 
we put singularities at the center of the particle which satisfy exactly the boundary conditions at 
the surface of the particle for an unbounded single-fluid domain. The resulting unbounded-domain 
solution does not satisfy the boundary conditions at the flat interface; instead, there is a mismatch 
of O(E) at the interface. To eliminate this "error", the simple transformation rule of Lee et al. (1979) 
is used to transform the unbounded-domain solution to a corresponding solution (in terms of the 
Green's functions for a bounded domain) that satisfies exactly the boundary conditions at the 
interface. In general, however, this new solution does not satisfy the boundary conditions any 
longer at the surface of the small particle, but induces an error of O(E). Additional higher order 
singularities must then be included at the particle center to cancel this induced error of O(E), and 
so on. The result of this procedure is an asymptotic approximation, in the form of a series in ,, 
that is valid in the limit of E-+0. 

The complete solution for the inner problem is obtained by superposition of the solution for 
a uniform streaming flow UMR(0) and for the various linear and quadratic flows given by [17] 
and [18], with stagnation point at the origin on the approximately planar interface of the larger 
drop. However, a complete solution is already available for the uniform streaming flow problem, 



HYDRODYNAMIC INTERACTION BETWEEN DROPS 1027 

corresponding t o  u H R ( 0 ) ,  due to Yang & Leal (1990) who determined the relationship between the 
hydrodynamic drag force on the fluid particle and the streaming velocity. It thus remains only to 
solve the problems for the linear and quadratic flows. In the theoretical analysis that follows, 
we consider the hydrodynamic force acting on the small fluid particle in the presence of these 
linear and quadratic flows. The results are then used in section 5 to calculate the trajectories of 
a small drop in the vicinity of a larger drop. 

3. SOLUTION AT O(6): L INEAR FLOWS 

Let us begin with the contributions to the disturbance flow in the vicinity of the small particle 
associated with the outer flow field at O(6), cf. [17] and [18]. The governing equations for the inner 
region at 0(6) are just Stokes equations and the continuity equation. The boundary conditions for 
the disturbance velocity field obtained from expansions via domain perturbation are, at z = 0 (the 
interface of the large drop): 

V~ 1> : V(21) , [20] 

v~ 1)" e~ = v~ ))" e~ = 0 [21] 

and 

[ [  (iql ~ (I) [22] 6 x ~  = I I ~ y ~  = 0 ,  

where the symbol ~(. )1 represents the jump of quantity ( . )  across the surface of the drop. At the 
surface of the small fluid particle, the disturbance flow must satisfy continuity of velocity and 
tangential stress and the kinematic condition: 

v[I). n = - U~ • n for x ~ small fluid particle surface. [23] 

The far-field boundary conditions are 

Vl ""}0 , V2 ""1' 0 a s  Ix l  ~ o v .  [24] 

It can be seen by examining [17] that the flows imposed on the inner problem from the outer 
solution are, at O(6), a uniaxial extension and a pair of simple shear flows. 

The above problem for the inner region at 0(6) can be simplified by using linearity to obtain 
a solution by superposition of the solutions for a stationary particle near a flat interface in the 
uniaxial staining flow and the linear shear flows. 

3. I. Uniaxial extensional flow 
Let us first consider the creeping motion of a fluid in the vicinity of a stationary small particle 

that is located at point Xp = (0, 0, d)f  in fluid 2 when the undisturbed motion is an axisymmetric 
uniaxial straining flow with a stagnation point at the origin on the interface at z = 0: 

cos 0 
U f  (x) = 6 • - -  E .  x [25] 

2(1 + 2) 

in which the dimensionless strain rate tensor E has Cartesian components, Eo= (6 U- 36~36j3), 
see figure 2(a). The linearity of the problem enables us to decompose this undisturbed flow into 
a constant vector (i.e. uniform streaming flow), 

cos 0 cos 0 
U ~ ( x )  = 6 -  2(1 + 2---~ E.  Xp = - 6 . - ~  de~, [26] 

and a uniaxial extensional flow with stagnation point at the particle center Xp, i.e. 

cos 0 
U~(x) = 6 • 2(1 + 2 - - - - - ~  E '  (x - Xp). [271 

The uniform streaming flow problem was treated in Yang & Leal (1990). Here, we solve the 
problem with undisturbed flow U ~ ( x ) =  E .  ( x -  xp). 

In an infinite fluid domain with no interface, the disturbance velocity field outside the small fluid 
particle, which satisfies the boundary conditions at the particle surface, including the kinematic 

tNote that d here, and throughout later sections, is assumed to be sealed with respect to the particle radius a. 

LIMF 18/6--P 
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condition [23] with undisturbed flow [27], can be represented by a superposition of the fundamental 
solutions for a potential quadrupole and a stresslet, both applied at the center of the particle. For 
a fluid particle with viscosity #3 = x#2, the result satisfying the boundary conditions is of the form 

~A (X)Uss(X, xp; ez, ez) + ½B(x)uvQ(x, xp; ez, ez). [281 

Here, Uss(X, xp; ez, ez) and uvo(x, xp; e~, e~) denote the fundamental solutions for a stresslet (e~, e~) 
and a potential quadrupole (e~, ez) located at the center of  the particle in an unbounded single fluid 
domain, el. Chwang & Wu (1975) for the specific formulae of Uss and uvo. The parameters A (x) 
and B(K) are defined as 

+ x B ( x )  = x [29a,b] 
A ( x ) -  l + x '  l + x "  

Since we consider only the limit E = (I/d) <~ 1, the solution of  the full problem, including the 
interface, is most conveniently obtained via the method of reflections, as explained in some detail 
by Lee et al. (1979). The zeroth-order approximation for the velocity field outside the particle in 
this procedure is the single-fluid unbounded-domain solution given by [28], which satisfies 
boundary conditions exactly at the particle surface but does not satisfy the interface boundary 
conditions at z = 0. However, Lee et al. have shown that a first correction which does satisfy these 
conditions can be obtained by simply utilizing the same form [28] as in the zeroth-order solution, 
but with the fundamental solutions U2,ss and u2.vQ for a stresslet and a potential quadrupole in the 
presence of a flat interface obtained by the generalized reciprocal theorem of Lee et al. (1979). 

Although the solution given by [28] now satisfies the interface boundary conditions, it no longer 
satisfies the boundary conditions at the particle surface, and additional singularities are needed at 
the particle center in order to match the "first correction" velocity field at the particle surface: i.e. 
the interface reflection of the potential quadrupole and the stresslet, evaluated at the particle 
surface• The preceding two steps, leading to the first correction, could be carried out for abitrary 
E. However, the expression for the interface reflection evaluated at the drop surface is highly 
complicated, and it is not possible for arbitrary E to determine singularities at the particle center 
which precisely satisfy the continuity of  tangential velocity and stress and zero normal velocity 
boundary conditions at all points on the particle surface. Instead, we consider the asymptotic limit 
e. ,~ 1, and then choose singularities to match only the first few terms of  the interface reflections 
at the particle surface in powers of E. The leading terms of the interface reflection near the particle 
surface, for small E, are 

~A(x)[E2 2 + 3 ) .  1 + 2 2  1 • 1 + 2  "ez+E3'  1 + 2  E ' ( x - x p )  +O(1~4), [30] 

in which 2 is the viscosity ratio (i.e. 2 =/a~/#2) of the two continuous fluid phases 1 and 2. 
Examining [30], we see that the presence of  the interface induces a steady streaming flow at O(E 2) 

normal to the interface. The term of O(E 3) in [30] is equivalent to an axisymmetric uniaxial straining 
flow with a stagnation point at the drop center, and the z-axis as the axis of symmetry• The singular- 
ities required to match the additional velocity field [30] at the particle surface can be readily 
evaluated• We have seen previously that an extensional flow of the type represented by the 
O(E 3) term in [30] is generated by a superposition of  a stresslet and a potential quadrupole. It can 
be shown that a uniform streaming flow solution is generated in an unbounded single fluid by a 
Stokeslet and a potential dipole• To counter the term of O(E 2) in [30], we thus require the super- 
position of  a Stokeslet and a potential dipole at the drop center• The resulting velocity field is 

1 5 2 +  3). A(x)'2rC(x)Us(X'xp;ez)--~B(X)UD(X'Xp;ez)TLJ [31] 
32 1 + 2  

where the parameter C ( x )  is defined as 

- -  [ 3 2 ]  C ( x )  = 1 + x 

and Us(X, xp;ez) and uD(x, xp;e~) denote the fundamental solutions for a Stokeslet ez and a 
potential dipole e~ at the drop center in an unbounded domain with no interface. It is important 
to note that the point force (i.e. Stokeslet) velocity of  strength O(E2), corresponding to Us (x, Xp; e~), 
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will itself generate a vertical velocity component of O(E 3) at the particle surface when it is 
"reflected" from the interface, of. Lee et al. (1979). Thus, if we are to consider any correction terms 
of O(E 3) from [30] we must simultaneously include this additional O(~ 3) correction to the velocity 
field near the drop. In order to match this O(~ 2) term at the drop surface we require an additional 
point force and potential dipole at the drop center of the form: 

5 x 2 2 32 3 • 
11~3'~T = - - 4 " ( ~ "  "l "~--~-)A(x)C(r)E [C(x)Us(X, xv,e~)--~B(X)UD(X, xp;e~)]. [33] 

Thus, the complete contribution to the velocity field that is required to match the first two terms 
of the interface reflection [30] at the drop surface is a superposition of: 

Stokeslet, 

{2 } 5 [9C(2)C(x)E]~. E + O(d) ; - ~ A (X)Us (x, xp; e~) [34] 
I 

potential dipole, 

stresslet, 

a(r) x x .  {~,~C(2)C(K)E]"" O(E')}; ~2A(/£)C---~IID( , p, ez)  E + [35] 

5 1 + 2 2  3 1 5A(x)uss(X, xp; e~, e~) 1 + iA(r) ~ E + O(E 4) [36] 

and 
potential quadrupole, 

1 + 2 2  3 4 -I 

The complete velocity field resulting from the superposition of [34H37] satisfies boundary 
conditions exactly at the interface z = 0 and boundary conditions to O(~ 2) at the particle surface. 
Higher order approximations could be obtained by straightforward continuation of the same 
procedure. However, the solution above is sufficient for present purposes. 

The net force exerted on a fluid drop located at the stagnation point in the undisturbed flow 
field U~ = E.  ( x -  Xp) can be evaluated simply from the Stokeslet strength: 

2 
l~ = lO~a(~)E • Y~ [9C(2)c(~)E]"e, + o ( d ) .  [38] 

n - l  

The force F is always oriented away from the interface, and the magnitude is increased as the 
viscosity ratios, 2 and x, become larger. Thus, a negative external force - F  toward the interface 
would have to be applied to the particle to keep it from translating away from the stagnation 
point Xp of the flow regardless of the particle position, or the viscosity ratio of the two fluids. It 
should be understood that, in this flow field l~l~ = E.  (x - xp), the interface translates with velocity 
2de, toward the stagnation point xp at which the drop center is held fixed. This "interface motion" 
can be viewed as the source of F. 

Now let us turn to the original problem of calculating the force acting on a stationary particle 
that is located at point xp in fluid 2 which is undergoing the axisymmetric uniaxial extension flow 
Q~ = E.  x with origin at the interface [i.e. figure 2(a)]. Owing to the linearity of the problem, the 
hydrodynamic force exerted in this case can be determined by a superposition of the force for a 
uniform streaming flow with velocity Q~ = E.  xp and for a uniaxial straining flow ~ = E.  (x - xp) 
with stagnation point at the drop center. The result can be expressed in the following form: 

2 
F = Kr" E .xp + lOnA(r)E. ~ [9C(2)C(r)E]'e: + O(E'). [39] 

n - I  

The components of the translation resistance tensor KT were determined by Yang & Leal (1990) 
for motion of a fluid drop near a plane fluid-fluid interface. 

In the study of the hydrodynamic interactions between a single bubble and a no-slip particle 
(i.e. for 2--,0 and x-- ,~) ,  Dukhin & Rulev (1977) obtained an exact result for the drag force on 
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a no-slip sphere located at the axis of symmetry in an axisymmetric uniaxial extensional flow 
U• = E .  x, near a gas-liquid interface (i.e. 2 ~0),  using the eigensolutions of Laplace's equation 
in bipolar coordinates. It is a simple matter to calculate the drag force F' on the fluid particle from 
the present asymptotic solution [39] with xp = (0, 0, d). The hydrodynamic drag scaled with respect 
to Stokes drag in an unbounded fluid is 

12n~2 UtadE = C(x) 1 + .=,~ [~C(2)C(x) .E]" - ~B(x) • 11+2 + 4_____~2. E3 _ ~A(x)C(2)E 3 e.° + O(E4). 

[401 

In order to illustrate the effects of hydrodynamic interaction between the particle and the interface, 
the dimensionless drag ratio from [40] is plotted in figure 3 as a function of the dimensionless 
separation distance d for ~, = 0 and oo. For each value of 2, we include two values of the viscosity 
ratio x = 0 (i.e. inviscid bubble) and x = oo (i.e. no-slip sphere). Also shown for comparison are 
the corresponding exact-solution results of Dukhin & Rulev for a no-slip sphere near a free surface 
(i.e. 2 ~0).  It can be seen from figure 3 that there is very good agreement between the two solutions, 
except in the region near d ~ 1. Indeed, the relative error associated with the asymptotic solution 
is < 1 •77% for d t> 1.5. As expected, the difference between the two results becomes larger as the 
particle approaches the interface owing to the poor convergence of the asymptotic solution [40] 
in powers of E. Further, due to the presence of the interface, the magnitude of drag is increased 
for all values of 2 and x considered here, and this effect is a strong function of the drop position 
relative to the interface. Although the qualitative features of the dimensionless drag as a function 
of the dimensionless separation distance d are, in fact, quite similar for all viscosity ratios, 2 and 
x, the relative increase in the drag for an inviscid gas bubble (x--*0) is much larger than that for 
a no-slip sphere (x ~oo).  

3.2. Linear shear flows 

We now turn to the case of a fluid drop located at an arbitrary point Xp in a simple shear flow 
U~ = it" • x, either parallel or perpendicular to the interface as shown in figure 2(b). The shear rate 
tensor is given by 

sin0 [! ° o3 ] 
• - -  0 • [ 4 1 ]  

F = { F ~ } = 6  2 (1+2 )  1 0 

Again the problem can be decomposed into a simple translation of the fluid system including the 
interface with uniform velocity U~ = F • Xp past the stationary drop together with a linear shear 
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Figure. 3. Drag  ratio for axisymmetric extensional flow 
relative to Stoke's  drag in an unbounded  fluid as a function 
of  the dimensionless distance, d, between the particle and the 
interface: U p  = E .  x; for 2 = oo, - -  - for ). = 0 and C) 
for the corresponding exact-solution results (2 = 0, r = oo) 

of  Dukhin  & Ruler  (1977). 
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Figure. 4. Drag  ratio relative to the drag in an unbounded  
fluid as a function of  the dimensionless distance, d, between 
the particle and the interface: U ~ = F i 3 z e x ; - -  for 
2 = oo, - - - for 2 = 0 and O for the corresponding exact- 
solution results (2 = x = oo) of  Go ldman  e t  al. (1976b) and 

Goren  & O'Neill (1971). 
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flow U~ ° = r • x - F • xp with a stagnation point at the drop center. In view of the linearity of 
the problem we need only solve the case of U~ = Fl3(Z --d)ex + F3txe~. In order to analyze the 
velocity field we follow the method of reflections procedure of the preceding example. In this 
case, the solution for the disturbance flow in the unbounded fluid is simply a superposition of a 
stresslet, and a potential quadrupole, at the center of the drop, i.e. 

stresslet, 

and 
potential quadrupole, 

--56A (x)[F13 Uss (x, xp; ex, e~) + F31 Uss (x, xp; e~, %)]; 

-~B(x) [ r l3u~(x ,  xp; ex, e J  + r31 u~(x ,  Xp; e,, ex)]. 

[42a] 

For a solid no-slip sphere (i.e. r ~ ~ )  we need an additional rotlet distribution that is associated 
with the hydrodynamic couple induced by the primary flow: 

rotlet, 

- t o ( x ) ( F t 3  - r31 )UR (X, Xp; %), [42c1 

in which the parameter O ( x ) =  1 for a no-slip sphere, and otherwise O ( r ) =  0. The unbounded- 
domain solution represented by [42a-c] satisfies exactly the boundary conditions at the surface of 
the drop but generates a mismatch at O(~) at the flat interface. 

As in the preceding example, the first correction for the presence of the interface in the reflections 
expansion can now be obtained easily from the unbounded-domain solution, [42a-c], by simply 
replacing the fundamental solutions Uss, u ~  and UR (which pertain to an unbounded fluid) with 
the corresponding fundamental solutions U2,ss , U2,pQ and U2,R that satisfy boundary conditions on 
the flat interface [and are generated using the lemma of Lee et al. (1979)]. The first correction for 
the presence of the interface does not satisfy the boundary conditions at the drop surface, because 
the interface reflection is nonzero at the drop surface. Following section 3.1, we examine the leading 
terms of the reflected velocity field at the particle surface as a power series in E: 

£2 52A(x)(-F13 +/"31) -- 200¢)(F13 --/-'31) 
ex + E 3" F * .  (X - -  Xp), [43a] 

16 1 + 2  

where the nonzero components of the second-order shear rate tensor r *  are given by 

5 2 d  0¢)  (El3 + r31 ) - (2 - 2 ) 0  (r)(Ft3 - -  F31 ) 
F ~'3 = [43b1 

16(1 + 2) 

and 

5(1 -'1"- 22)A (~)(FI 3 -t" F31 ) - -  (1 + 42)O(x)(F13 -- F31 ) 
Y ~  = [43c] 

16(1 + 2) 

It can be seen from [43a-¢] that the presence of the interface in this case is equivalent in its effect 
on the particle to a steady streaming flow at O(E 2) parallel to the interface, and a linear shear flow 
at O(E 3) either normal or parallel to the interface. 

In order to satisfy the conditions of continuity of tangential velocity and stress and zero normal 
velocity at the particle surface, we need additional singularities at the particle center that match 
the reflected velocity field at the particle surface. For the term of O(E2), a point force and a potential 
dipole are required, which have the intensity and orientation: 

3 . 5 2 A  (x) (r,3 + r3~) - 20  0¢) (-F13 -- F3~) E2 " [C(x)Us(X, x.; e~) - }B@)UD(X, xp; ex)]. 
64 1 + 2  

[441 

By induction, we also know that the interface reflection of the point force and potential dipole 
solutions corresponding to [44] will yield a nonzero contribution of O(E 3) to the x-component of 
velocity at the particle surface. In order to satisfy the boundary conditions on the particle surface 

[42b] 
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t o  O(E3), we thus require an additional point force and a potential dipole at the particle center with 
magnitude and orientation: 

3 3 2 - 32. 52.A(lc)(F~3 + F3t ) - 20(i<)(FI3 - -  F31 ) 

16"64 1+2. 1+2. 

x C(x)E 3. [C(x)Us(X, xp; e~) - ½B(r)uv(x, Xp; eD]. [45] 

Further, the singularities required to match the O(E 2) contribution in [43a] have been previously 
seen to be a stresslet, a rotlet and a potential quadrupole at the drop center at O(E3). 

Consequently, for the linear shear flow past a drop, the singularities required at the center of 
the drop through O(E 3) are: 

Stokeslet, 

3 52.A(x)(F|3 + F31) -- 20(Ic)(F13 - r31) C(!¢)E2. [1 -- ~D(l)C(x)E]Us(X, xp; e~); [46] 
64 1 + 2  

potential dipole, 

1 52A (x)(Ft3 - F31) - 20(x)(Ft3 - F31) B(x)E2" [1 -- 9D(2)C(x)~]uD(x, Xp; ex); [47] 
64 1 + 2  

+F31) 30(~:)(F13 -- F31)-] 3) " 
- ~ ff fUsstX, x , ;  ex, e,); 

stresslet, 

--5A(K){(FI3+F3I)+[ 5(1 + 31)A(K)(F1316(1 + 2) 

potential quadrupole, 

[48] 

3e  , r3 ,3}u  xx, ex ez,   49, 

and 

rotlet, 

16(1 + 2 )  16 E 3 UR(X, Xp;ey); [501 

in which the parameter D(2.) is defined as 

D(2) = 2_____.i_~ [511 
1 + 1 "  

The net force exerted on the drop located at the center of the simple shear flow can be evaluated 
simply from the Stokeslet distribution and expressed in the following form: 

F = Ksv: F. [52a] 

Here, the nonzero components of the third-order hydrodynamic tensor KSF are given by 

3n 52A (r)  - 20 (x )  C(x)~2[1 _ 9D(2)C(x)E ] + O(~4 ) [52b] g l 1 3  _ _  

SF = 8 1 + 2 .  

3n 52A(x) - 2e(x) c(x)~2[l _ ~D(1)C(x)~] + O(E4), [52c] KI31 
SF = 8 1 + 2  

which include the rotlet contribution for a no-slip sphere case, see [42c]. In an unbounded single 
fluid the net force on a drop at the center of a linear shear flow would be zero. For a fluid drop 
(with finite x) the force is always oriented towards the negative x-axis. Thus, the interface will 
induce a translation in the - ex direction parallel to the interface in the absence of an applied force 
- F .  It can be noted that a fluid drop (x # o0) near a free surface (i.e. 2.--,0) will not experience 
the induced translation. On the other hand, in the case of a no-slip sphere, the direction of the force 
component for shear component Fl3  , i.e. U~ = F13 ( z  - d)ex depends on the viscosity ratio 2. Indeed 
when 2. < 2/5, the induced translation is in the positive ex direction parallel to the interface. 
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A solid particle (x = oo), in addition to the induced hydrodynamic force [52a], will experience 
a hydrodynamic torque in the linear shear flow, which is readily determined from the rotlet 
singularity, [50]: 

T = Ksx: F, [53a] 

where the nonzero components of the third-order hydrodynamic tensor Ksx are given by 

K213 = 4 ~ I  1 3 ] ST 8(1 + 2) E3 [53b] 

and 

52 + 2 3-] 
r,-231 = 47r 1 + --ST 8(1 ~--~e j .  [53c1 

All of the preceding discussion is concerned with the force and torque on a particle in a shear 
flow with a stagnation at the drop center. In order to determine the force and torque when the 
particle is located at an arbitrary point Xp in the undisturbed flow U~ (x) = F • x, which is zero at 
the origin on the interface z = 0 [cf. figure 2(b)], the present results, [52a] and [53a], must be 
combined with the corresponding result for the uniform streaming flow U~ = F - xp: 

F = KT" F • xp + KSF : F [54a] 

and 

T = Kc" F • Xp + KST: F, [54b] 

where Kc is the coupling tensor and Kc = 0 for a fluid particle (i.e. r ~ oe). The components of 
the coupling tensor Kc have been determined elsewhere for a solid particle in the vicinity of a fluid 
interface (cf. Lee et al. 1979; Yang & Leal 1984). 

In this case, one basis to check our solution is to compare it with the hydrodynamic torque on 
a no-slip sphere for a linear shear flow parallel to a rigid plane boundary U[  (x) = El3 z ex, calculated 
by Goldman et al. (1967b) and Goren & O'Neill (1971) using the eigenfunctions of Laplace's 
equation in bipolar coordinates. The approximate drag scaled with respect to Stokes drag in an 
infinite fluid is simply obtained from the present asymptotic solution [54a] and given as 

6rt#2 UtF,3da = C(x) 1 + ,=l [--9D(2)C(x)E]" -- ~" B(x) 11+2 + 22 E3 

5 2 A ( x ) -  20 (x )  } 
- 1-~d-2-) ,3 e~+O(c4) [551 

In figure 4 the drag ratio [55] is plotted as a function of d, the dimensionless separation distance 
between the drop and the interface, for the same set of parameters as in figure 3. Also shown for 
comparison is the corresponding drag for the case of 2 = x .* oe determined by Goldman et al. 
(1976b) and Goren & O'Neill (1979). In many respects, the results are similar to those for parallel 
translation of a drop obtained by Yang & Leal (1990). As mentioned previously, we presume e ,~ 1 
in the derivation of [55]. Thus, for e ,~ 1 (i.e. d ,> 1) the asymptotic solution [55] coincides almost 
exactly with the earlier works, which are the exact solutions for simple shear flow parallel to a solid 
wall. Even for d ~ 1.5, the approximation solution shows reasonably good agreement with the exact 
solutions. Indeed, for a no-slip sphere the relative error is within 1.38% for d >/1.5. It can be noted 
that, for all x, the drag either increases or decreases relative to Stokes' drag for an unbounded fluid 
(depending upon the viscosity ratio 2) owing to the presence of the internee. However, the drag 
for an inviscid gas bubble (x-*0) does not increase (or decrease) as fast as the result for a no-slip 
sphere in the limit as d-* 1. On the other hand, as noted in figure 3, the drag for an inviscid gas 
bubble in a uniaxial straining flow increases rapidly as the bubble approaches the interface 
compared to the result for a no-slip sphere. Thus, the magnitude of the effect of the interface on 
drag for an inviscid gas bubble in a linear flow is considerably larger in motion normal to the 
interface than in motion parallel to the interface. 

We now have a complete set of solutions for a stationary particle at arbitrary point xp in the 
linear part of the local component flows formulated in section 2. It should be noted, however, that 
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for a force and torque-free particle (as would be typical in trajectory calculations), the translational 
and rotational motion of the particle must generate Stokeslets, potential dipoles and rotlets that 
exactly cancel the Stokeslets [34] and [46], the potential dipoles [35] and [47] and the rotlets [50] 
produced at the center of a stationary particle in the linear flows. Thus, at O(6) the net disturbance 
velocity field due to the presence of a particle freely suspended in the linear flows corresponds to 
stresslet singularities, [36] and [48], and potential quadrupole singularities, [37] and [49] at the 
particle center xi,. The stresslet velocity fields, uss decay like l/r2 and the potential quadrupole 
velocity fields decay like l/r4 (r = Ix - xJ). Thus, these singularities produce disturbance flows in 
the matching region with the outer solution, which are of 0(S3) and 0(6’), respectively [since the 
strength of the singularities is O(6)]. Thus, the first nonzero correction to the outer solution would 
appear to be 0(6’), as was, in fact, suggested earlier via an overall force balance argument. 

4. SOLUTION AT 0(S2) 

For a solid collector (i.e. 1 = co), the first component of the undisturbed flow, [17] and [18], which 
produces a contribution in the inner region that forces the particle toward the interface, occurs at 
O(d2). Thus, to obtain accurate trajectories over the whole range of possible viscosity ratios for 
the collector, we must consider the 0(6*) inner problem. 

In the context of the solution procedure outlined above, contributions to the inner problem at 
0(a2) come from two sources. One is the O(S*) terms in the undisturbed outer flow, given by [17] 
and [18]. We may note, as indicated above, that the first two terms in the inner expansion at O(1) 
and O(6) produce no disturbance flow contribution in the matching region that is larger than O(6 3), 
and thus the outer flow solution is just the undisturbed flow [17] and [18] through terms of O(a2). 
The second contribution to the inner disturbance flow at O(a2) is generated by the nonhomogeneous 
terms that arise from the domain perturbation approximation of the boundary conditions at the 
large drop surface. The specific form of these nonhomogeneous boundary terms is obtained by 
substituting the solutions for the O(1) and O(6) velocity and stress fields in the inner region into the 
domain perturbation terms at O(d2): e.g. the zero normal velocity condition [15], which becomes 

d2) . e. + xd’) . e, + yuj” 
I _ J 

~e,-i(*z+y2)~(U~'~~e,)=0 at z =O; 

the continuity of velocity condition, which becomes 

IY u’I’-_!(x2+y2)~ I ~0 at z ~0; 

and the continuity of tangential stress condition, which becomes 

L c(2) + XQW + yo’l’ _ xg(I) _ gx2 + y2) 
zx IX Y-X *z 

f&Y =. 

8Z 
I 

and 

WI 

atz=O [5W 

at z = 0. [56dl 

Thus, in the boundary conditions at 0(S2), inhomogeneous contributions occur due to the O(6) 
disturbance flows produced by the singularities in [36], [37], [48] and [49]. To reduce the com- 
plexity of the individual problems, we will consider each of the two types of O(S’) contributions 
separately. 

4.1. Quadratic flows arising from the undisturbed outer flows at 0(6*) 

First, we will consider the disturbance flows for a stationary particle in the O(S2) flows that arise 
from matching with [17] and [I 81. Since the undisturbed flows [ 171 and [18] satisfy the boundary 
conditions at z = 0, the disturbance flows are required to satisfy the boundary conditions on the 
surface of a stationary particle and on the interface z = 0 (i.e. continuity of tangential velocity and 
stress and zero normal velocity on both the surfaces), in addition to the requirement that the 
disturbance velocity decay to zero as 1 x 1 -+a, so that the net velocity matches the outer solution. 
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Thus, we follow the same method as used in the previous section to obtain solutions for the net 
disturbance singularities at the particle center. 

4.1. I. Axisymmetric paraboloidal and stagnation flows. The first case that we consider is the 
flow with an axisymmetric paraboloidal and stagnation-like velocity profile with vanishing velocity 
at the interface: 

U~ ° (x) = KI (xzex + yzey - z2e~) + K2 (x 2 + y2)e~ [57] 

in which the flow parameters are 

cos 0 K l =  c o s 0 ( 2 - - 3 2 )  62 and K 2 = - - - 6 2  , 
2 1 + 2  1 + 2  

see figures 2(c, d). This problem can be treated, as in the preceding cases, by decomposing the 
undisturbed flow into a simple uniform streaming flow U~ ° (x) = - Kt d2e,, a linear extensional flow 
with vanishing velocity at the particle center U~°(x) = K~ dE .  (x - Xp) and the remaining quadratic 
flows with a stagnation point at the particle center. The first two problems were treated in our 
earlier publication, Yang & Leal (1990), and in the previous section 3.1, respectively. 

The problem of a particle in the quadratic flows with a stagnation at the particle center can be 
solved for an unbounded domain (with no interface) utilizing the fundamental singularity solutions 
of  Chwang & Wu (1975). In particular, we can show that a Stokeslet, a Stokes quadrupole, a 
potential dipole and a potential octupole, of  the form 

Stokeslet, 

8(,0 
T (K1 - 2K2)us(x, xp; e~), [58a] 

Stokes quadrupole, 

potential dipole, 

,and 

potential octupole, 

2Kt+K2 2 + 7 x  02 
24 1 + x  ~-z ~us(x'xp;e~)' [58b] 

1 //K 2 + x  2 - 5 r : \  
[58cl 

0 2 
B(x)  (2Kl Xp; e~), [58d] - 2---T- + K 0   z UD(X' 

are required at the particle center to satisfy the boundary conditions, i.e. continuity of tangential 
velocity and stress and zero normal velocity at the particle surface. Since the interface reflection 
in Lee et al.'s (1979) reflection technique generates a mismatch at the particle surface, we again 
require additional singularities at the particle center to match the reflected flow field. Following 
the preceding analysis, we examine the leading terms of the reflected field at the particle surface 
as a power series in E: 

](K1 - 2K2)C(2)B(x)[-Ee,  - EZE • (x - xp) + O(E3)]. [591 

In order to satisfy the boundary condition at all points of the particle surface, additional 
singularities are required at the particle center. These can be determined from the corresponding 
solutions for a surface velocity distribution of  the form [59] in an unbounded domain. In particular, 
the Stokeslet contribution is sufficient to evaluate the hydrodynamic force exerted on the particle. 
The result is 

F = - 2nB(x)(K, - 2K2) ~C(2)C(x)~]"e~ + O(E 3) . [60] 

Because of  symmetry there is no torque exerted on the particle by these flows. The existence of 
the hydrodynamic force F, [60], implies that a freely suspended particle located at the center of 
the quadratic stagnation and paraboloidal flows will move away from the stagnation point along 
the streamline that would pass through this point in the absence of  the particle. However, it can 
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be noted that an inviscid gas bubble [i.e. x ~ 0  and thus B(x)= 0] will not experience any 
hydrodynamic drag and thus remains at the stagnation point of the flows. 

It is a simple matter to calculate the hydrodynamic drag force on the particle immersed in the 
axisymmetric paraboloidal and stagnation flows of [57] with a stagnation point at the interface by 
a superposition of the corresponding solutions for a uniform streaming flow, a uniaxial extensional 
flow and the solution [60] for the quadratic flows with vanishing velocity at the particle center. The 
resulting expression for the drag 

3 ~ I +42  F '  - 

3 - -  ! ~ A  ( K T ) C ( 2 ) I Z  3 6~p2 L~ KI dZa 

1 KI -- 2/(2 B (x) 2 ~, t 
+ 3 K~ C ~  E t '  + 9C(2)C(x)E]j e2 + O(E4). [61] 

This can be compared directly with the corresponding result from Goren & O'Neill's (1971) exact 
solution for a no-slip small particle (i.e. x ~ ~ )  in the presence of a nearby rigid "collector" (i.e. 
2 ~ ~) .  As shown in figure 5, the approximate solution gives a remarkably accurate representation 
of the exact result, over almost the whole range of possible particle positions. Although the 
discrepancy between the two solutions become larger as d ~  1, it still remains relatively small (e.g. 
the relative error at d = 1.01 is only 2.40% and the error is within 0.90% for d > 1.5). 

4.1.2. Quadratic shear flows. A second quadratic flow problem that appears from matching the 
undisturbed flow, [17] and [18], is the steady quadratic shear flows past a fluid particle near a plane 
fluid interface. In this problem, the fluid velocity at infinity is 

U f  (x) = (K3y 2 + K 4 z Z ) e x ,  [62] 

in which the flow parameters are 

K3=g2sinOl+32 and K4= - 6 2 s i n ~ 0 2 + 9 2  
4 I + 2  4 1 + 2  ' 

see figure 2(e). A general solution for this problem can be obtained by superimposing the results for 
a uniform streaming flow with velocity U~ (x) = K4d2ex, a linear shear flow U~ (x) = 2K4d(z - d)ex 
and, finally, a quadratic shear flow with a stagnation point at the particle center. 

First, we consider the case of a particle in the quadratic flow which vanishes at the particle center. 
It can be demonstrated that a Stokeslet, a potential dipole, a Stokes quadrupole and a potential 
octupole are necessary to produce such a flow in an unbounded fluid. However, as usual, the 
reflected velocity field from the interface does not satisfy boundary conditions at O(E) on the 
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F igure .  5. D imens ion le s s  d r a g  o f  [61] as a func t ion  o f  
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F igure .  6. D imens ion less  d r a g  o f  [65] as  a func t ion  o f  the 
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particle surface, and thus additional singularities are required at the center of the particle. We may 
examine the leading terms of this reflected field, expressed as a power series in E: 

-¼(K 3 + Ka)B(r){~¢" D(g)ex - 3E2" [D(A)(z - d)e~ - C(2)xe~] + 0@3)}. [63] 

The required additional singularities to match the corresponding reflected flows at the particle 
surface are determined using the approach outlined in the previous example. The hydrodynamic 
force and torque on the particle in the quadratic flow with vanishing velocity at the particle center 
can be evaluated from the resulting Stokeslet and rotlet contributions: 

F = 2xB(x) (K3 + - 9D0.)C(~c)E]" + 0(  £3 x [64a1 

T=~-B(~c)O(~)(Ka+ K4)[ e2 1 3 2 ~ + o(d) e,. [64b1 

These are the negatives of the force and torque that are required to keep the particle from translating 
and rotating at the stagnation point. In can be seen that for an inviscid gas particle F = T = 0. 

Ooren & O'Neil l  (1971) determined the exact solution for a solid no-slip sphere (i.e. x ~ oo) in 
the flow field, which in the absence of the sphere is a combination of a uniform streaming, and 
linear and parabolic shear flows with spatial dependence on z, near a rigid plane wall (i.e. K3 = 0 
in the problem of Ooren & O'Neill). It is a simple matter to calculate the approximate drag force 
on the fluid particle immersed in the undisturbed flow, [62], from the present asymptotic solution 
[64], combined with the corresponding solutions for the uniform streaming and linear shear flows. 
The drag ratio is simply given as: 

6~#2UtK4d2 a = C(x) [-~D(2)C(x)e]"-~B(r) ll +22~3+ 2 52A(r)-20(x)~38(1 + 2) 

K 3 + K  4 B(x) 2 
+ 3 T ' C - - - ~ e  [1-9D(2)C0c),];x+O(,'). [651 

In figure 6 the drag ratio [651 is plotted, for/(3 = 0, as a function of d, the dimensionless distance 
between the particle and the interface, for the same set of parameters as in figure 5. The "exact" 
results calculated numerically by Goren & O'Neill (1971) are also shown in the figure. There is very 
good agreement between the two solutions, except in the region near d ,~ 1. As expected, the 
discrepancy between the two results becomes larger as the particle approaches the interface. 
However, a detailed comparison shows that, even for d ~ 2, there is very good agreement between 
the two solutions, and the relative error in the asymptotic solution, [651, compared to the exact 
solution of Goren & O'Neill, is < 1.74% for d/> 1.5. For particle separations from the interface 
exceeding 2 or 3 particle radii, the existence of a critical viscosity ratio ). separating cases of 
increasing or decreasing drag, evident in figure 6, is similar to the result of Yang & Leal (1990) 
for parallel translation of a drop near a flat interface. As suggested from the results for the linear 
flows (e.g. figures 3 and 4 in section 3), the variation in the hydrodynamic resistances acting on 
an inviscid gas bubble in the quadratic flow is much more sensitive to the separation distance d 
for normal motion than for parallel motion relative to the interface, cf. figures 5 and 6. 

4.1.3. Nonaxisymmetric quadratic stagnation flow. Finally, we consider a nonaxisymmetric 
quadratic stagnation flow 

U~ (x) = ½(Ks + K6)x2ex - Ksxyey - g6xzez, [66] 

where 

sin 0 2 - 32 
Ks = 62. and K 6 = - 62" ~ sin 0, 

2(1 + 2) 2(1 + 2) 

see figure 2(f). This is the remaining contribution at 0(6 2) from matching with the undisturbed 
flow, [17] and [18], in the outer region. This problem can also be treated conveniently by 
decomposing the undisturbed flow with vanishing velocity at the origin on the interface z = 0 into 
a linear shear flow U~ (x)= -K6dxe, and a quadratic flow with stagnation point at the particle 
center. The former problem was solved in section 3. The unbounded-domain solution for the latter 
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problem can be shown to be represented by a Stokeslet, a potential dipole, a Stokes quadrupole 
and a potential octupole. The Stokeslet is required to produce a drag, and the potential dipole is 
associated with it to account for the body-thickness effect. We also require the Stokes quadrupole 
and the potential octupole to balance the power-law variations of the solution in r( = i x -  Xp I). 
In this case, the leading terms of  the mismatch generated by the reflected velocity field at the particle 
surface are: 

u~t)(x) = - ~(K5 + K6)B(x){¼E • D(2)ex - ]c 2. [D(2) (z - d)ex - C(2)xe,] + O(E3)}. [671 

The additional singularities needed to match those interface reflections are those for a uniform 
streaming flow at O(e) parallel to the interface, and a linear shear flow at O(e 2) either normal or 
parallel to the interface. The hydrodynamic force and torque acting on the particle at the center 
of  the quadratic stagnation flow can be readily evaluated from the resulting Stokeslet and rotlet 
contributions: 

F = re(Ks + K6)B(x) [--~D(2)C(x)EI ° + O(E 3) [68al 
n 

and 

E 2' l T = ~ ( K s + K 6 ) B ( x ) O ( x )  E ] ~ - ~  +O(E 3) ey. [68b] 

We now have a complete solution for a fluid particle in the quadratic stagnation flow with 
vanishing velocity at the particle center. Combining the results of  the present solution [68a,b] with 
those for the simple shear flow U~(x) = - K6dxez, we can obtain directly the hydrodynamic force 
and torque on the particle in the undisturbed flow centered at the origin defined in [67]. 

This completes our calculations of  the disturbance flows for a stationary particle in the 0(65) 
flows from matching with [17] and [18]. As we noted earlier, however, there remain contributions 
from the inhomogeneous boundary conditions at 0(62) due to the domain-perturbation approxi- 
mation [56a-d] at the interface: these consist of  terms from the stresslet and potential quadrupole 
singularities, [36], [37], [48] and [49] in the 0 (6)  disturbance flows. 

4.2. Nonhomogeneous contributions from the domain perturbation 

Thus, we now consider the additional u~ :) flows at 0(62) that arise from the domain perturbation 
conditions [56a-d] when the nonhomogeneous terms are evaluated using the O(6) disturbance flow 
solutions that are represented by the singularities in [36], [37], [48] and [49]. We thus require 
solutions that satisfy inhomogeneous boundary conditions at the interface z -- 0 from [56a-d] and 
the boundary conditions on the surface of a stationary particle, but vanish at "infinity". This 
velocity field, generated by nonhomogeneous terms on the plane z = 0, is in some aspects, similar 
to the corrections associated with application of  the original boundary conditions on the flat 
interface. The solution technique is similar to the method used to derive the general lemma in Lee 
et al. (1979). The problems, corresponding to each term in [36], [37], [48] and [49], are repetitive 
and ~l~eCd~i~gly tedious; thus, only one example will be worked through in detail here. This is the 
velocity field u) :) corresponding to the stresslet normal to the interface Uss(X, Xp; e~, e~) in [36]. For 
simplicity of  presentation, we drop the multiplicative coefficient that appears in [36], since the 
problem is linear and we can multiply by any constant at the end. Upon substitution into [56a-d], 
the "normalized" stresslet velocity field Uss(X, Xp; ez, e~) produces the following nonhomogeneous 
boundary conditions at O(e 3) on the interface z = 0: 

6(x 2 + y2) E 3 + O(E4), [69a] U~ 2)' e~ = u~2) ' e z  - -  1 + 2 

~a~2)~ = 24(1 - 2)x e3 + O(E4), [69b] 
1 + 2  

~-o.~2)~ _ 24(1 - 2)y E3 + O(E'*) [69c] 
1 + 2  

and 

~u~2~] = O(E)4. [69d] 
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As stated above, we require a solution that satisfies [69a--d], the boundary conditions on the surface 
of  a stationary fluid particle (i.e continuity of  tangential velocity and stress and zero normal 
velocity), and decays to zero as one moves far from the interface, i.e. into the outer region. 

To solve the above problem, we assume a solution of  the form 

8 
ul -- (1 + 2)(z -- d) 3 [XZex -t- yzey -t- (x 2 + y2)e~] -t- zG1 (x)e~ + z2Hl (x) [70a] 

and 

8 
u2 = (1 + 2) (z + d) 3 [xzex + yzey + (x 2 + y2)ez] + zG2(x)e~ + z2H2(x), [70a] 

which will still satisfy the normal velocity condition [69a] and the continuity of  tangential stress 
on the interface z = 0. From the continuity equation and the symmetry of  the problem, appropriate 
choices for the unknown functions Gj and Hj are made. The base velocity field, which vanishes at 
infinity and satisfies boundary conditions [69a-d], is found to be 

[ (x2+Y2)(4z-d) 1 8 XZex+yzey + e~ 
ut = (1 + ; t ) ( z  - d )  3 z - d 

-(I + :.)(z -d)' x (z-a-7 _]e~ + y -~ ~ -_] yj 

8z~ [ 6(x~ +Y~)-] 
- (1 + ~) (z  - a)  ~ 1 ~ _ - - ~  j e ,  [71a] 

8 [ (xZ+y2)(4z+d) ] 
us=  ( l + 2 ) ( z + d )  3 xzex+yzeyq z + d  ez 

12z2 ([ 5(x2 + y2)x'] [- 5(X2"}- y2)y'] ] 
- ( l+~)<z+a) '  x ~-¥k-~ ._]e,+Ly (z+a-~ _le, J ' 

8z2 [ 6(x2 +Y2)-] 
- <1 + ~)<z + a)  3 1 ~ ¥ ~ S ~ / e , .  [71bl 

This flow field does not satisfy boundary conditions on the surface of  the particle (i.e. continuity 
of  tangential velocity and stress and zero normal velocity). Hence, the next step is to add a 
disturbance velocity field so that the sum satisfies the boundary conditions on the surface of  the 
fluid particle. This is accomplished by expanding the above flow in a Taylor series expansion about 
the center of  the particle for small E, and introducing singularities at the particle center to match 
the component flows from this expansion at the sphere surface. These singularities are then reflected 
from the interface, using the relations of  Lee et al. (1979). The resulting force arising from the 
domain perturbation of  the net stresslet normal to the interface at O(6) (i.e. including the coefficient 
from [36]) is 

15 cos 0 
F = - n 6  ~ 2(1 + 2) ------------~A(x)C(x)[E + 9C(2)C(x)E~ + O(E3)]" e~. [72] 

It will be noted that the O(E 3) contribution from the stresslet Uss(X, xp; ez, e,) to the boundary 
conditions [69a-d] requires a flow field that produces an O(E) force on the particle. This appears 
surprising at first, since an E ~ point force at the particle center will produce an E 3 normal velocity 
on the interface. However, the E 3 stress difference on the interface, [69b], requires an E 2 tangential 
velocity on the interface. To satisfy the continuity equations, a component of  the normal velocity, 
although zero on the interface, has a strength of  O(E) at the particle center. Thus, the contribution 
to the force on the particle is O(E). Following the same line of  reasoning, it is apparent that the 
O(E 4 ) contribution from the stresslet through the domain perturbation conditions may contribute 
to the force at O(E2), . while the O(E 5) term may contribute to the force at O(E3). Thus, to obtain 
the complete force expression to O(E~), as is required to be compatible with the force contributions 
calculated earlier at 0(62) from the match with the undisturbed outer flow, it is necessary to include 
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the stresslet contributions to the domain perturbation conditions through O ( • 4 ) .  A stresslet normal 
to the interface, Uss(X, Xp; e~, e~), generates the following boundary conditions at O(c4): 

u~ 2)' e: = u~ 2)" e. = 0 + O(Es), [73a] 

~a~!~)~ = O(Es), [73b] 

~[ a)]] Ozy.o = O(E 5) [73c] 

and 

~u(2)~ _ 18(1 - 2) 
1 + 2  (x2+y2)(xex+yey)E4+O(ES)" [73d] 

The O(e 4) terms can be shown to yield a net force of O(c 3) on a stationary fluid particle. It is 
obvious that the hydrodynamic torque is zero in this case due to the symmetry of the stresslet 
Uss (x, Xp ; ez, ez). 

The other contributions from the singularities [37], [48] and [49] can be treated in a similar 
manner. The net force and torque on a 
Uss(X, Xp, ex, ez) of [48], are 

F = O ( E 3 6 2 ) e  x 

and 

stationary fluid particle arising from the stresslet, 

[74a] 

T = n62 15 sin 02(52 + 6) A(x)O(K)[E: + O(E3)]ey. 
8(1 + 2) 2 

[74b] 

The net forces on a stationary particle arising from the potential quadrupoles, upo (x, Xp; ez, ez) of 
[37] and urn(x, xp; ex, ez) of [49], are both O(E362) and the hydrodynamic torques are zero and 
O(E462), respectively. 

We now have a complete set of solutions for a fluid particle located at an arbitrary position 
relative to the larger drop. These solutions provide the necessary relationships between the various 
flow parameters, and the hydrodynamic force and torque for calculation of particle trajectories in 
the vicinity of the collector, which we shall consider in the following section. 

5. TRAJECTORY CALCULATIONS 

Let us now turn to considering the trajectory of a small fluid particle in the slow streaming 
motion past a large spherical drop. It has been shown in section 2 that the appropriate trajectory 
equation can be derived by using an asymptotic model in which the small fluid particle is in a 
semi-infinite fluid that is bounded by a fluid interface that appears planar at the leading order of 
approximation, and which undergoes a flow at infinity that is determined from the first few terms 
of the classical Hadamard-Rybczynski solution in an asymptotic expansion about the nearest point 
on the interface to the small particle for 6( = a/A)~, 1. 

Whenever the creeping motion approximation is applicable, general relationships can be written 
between the force on a fluid particle and its translational velocity as follows: 

U = M .  [F t - K~. K~ j. T j ,  [75a] 

where F t and T t a re  the total net force and torque acting on the particle, respectively, and M is 
the so-called mobility tensor defined by 

M = [S T - -  K t.  KR' '  Kc] [75b1 

in terms of the translational resistance tensor KT, the rotation tensor K~ and the coupling tensor 
Kc. The components of these tensors were evaluated by Yang & Leal (1990) for a spherical fluid 
drop in the vicinity of a plane fluid interface. 

In the preceding analysis, we have evaluated the hydrodynamic force F and torque T acting on 
a stationary fluid particle, as a function of its position relative to the interface, due to the local 
component flows associated with the undisturbed Hadamard-Rybczynski flow around the collector 
drop. If  external forces are acting on the particle these must be included in the total force, F t . One 
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such force is the buoyancy of  the particle. The nondimensional buoyant force acting on the particle 
is 

4 3 
FB = gna (P3 -- P2)g [76a] 

#2Uta 
After substituting for the terminal velocity of a large drop in an unbounded fluid, the buoyancy 
force in terms of inner variables is 

FB = 6n (P3 -- 192) C(2)62[sin 0% - cos 0er], [76b], 
(P2 - Pt) 

which is 0(62). Similarly, approximate forms for the unretarded London attractive force between 
a particle and a plane wall, as in Spielman & Cukor (1973), must also be included at 0(62) in terms 
of  the inner variables if they are to be treated in the analysis; i.e. 

3QC(2) 6 2 
FL = a4g(P2 -- P3)" ( d2 -- 1) 2. er, [77] 

where Q is the Hamaker constant, characteristic of  the attractive forces between the two bodies. 
Also, double-layer forces can be included using the approximate relations of Spielman & Cukor 
(1973): 

FDL = 9 D e ( p ( d Z C ( 2 )  e -~(d- I )  
2a4g(P2 -- Pl) [1 + e -~(d- i)]" 62e~, [78] 

where D,, (p, (d and z are the outer fluid dielectric constant, the (-potentials for the particle and 
the large drop and the dimensionless reciprocal double-layer thickness. 

In the present study, we consider a particle which is free of  any external force or torque (i.e. 
F t = F and T t = T). In this case, given the initial position of  the particle, [75a, b] provide its complete 
trajectory, with the hydrodynamic force and torque (F and T) obtained by superimposing the 
results for each component flow. It is a simple matter to show that the velocity of  the particle 
U = U~e, + Uoeo is given by 

1 15 1 1 . [__~D(2)d2 . 1 B(x) 

1 5A(x) 1 ( 1 ) 1  } 
+~D(2)C(2)A(X)d 4(1+A)2d  + O  ~ + 0 ( 6 2 )  [79a] 

and 

( 1  ' (')t ~ [a(2)] A(K)~+O Uo=sinO 2 ( 1 + 2 )  + 6 '  1 - ~ 2 d - ' 5  2 

+62"{  1 2+92d2 1 + ~  _ _  1 (~--3)}) 4C(~)C(2)+~[B(2)]ZA(x) + O  +O(63),  [79b] 

in which the velocity components, U, and Uo, are normal and tangential to the surface of the larger 
drop, respectively. 

First, we begin with the special case of a small fluid particle near a large no-slip collector sphere 
(i.e. 2---,o0). Clearly, in the absence of  the hydrodynamic interaction between the particle and the 
solid collector, 

U, ~ "~ -362d2 cos 0 [80a] 

and 

U~ ~ 36d sin 0(1 - 36d), [80b] 

which are the leading order forms for the velocity components in the asymptotic limit, 6--,0, in 
which the particle reduces to a material point. However, owing to the presence of hydrodynamic 
interactions between the particle and the collector, both of  the velocity components of  the particle 
decrease more rapidly as it approaches the surface of  the collector than they would with no 
interaction. This is illustrated in figures 7 and 8, where the velocity components U,/Ur ~ and Uo/U-: 
are given as a function of  the dimensionless separation distance d between the particle and the 
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Figure 8. Dimensionless tangential velocity, Uo/U~, as a 
function o f  the dimensionless separation distance, d, when 
6 =a/A =0,1:  - -  for x and - -  fo~: r = o v ;  O and /X 
are the corresponding exact-solution results (2 = x = oo) 
of  Goren & O'Neill (1971) and Jeffery & Onishi (1984), 

respectively. 

collector surface. Also included for comparison are the corresponding exact-solution results of 
Goren & O'Neill (1971) and Jeffery & Onishi (1984) for two solid spherical particles. It can be seen 
from the figures that the magnitude of the effect of the no -slip boundary on particle velocity is larger 
for the motion toward the collector surface than for the motion tangential to the collector surface. 
As indicated in figure 7, the discrepancy between the approximate and exact-solution results for 
the velocity component U, becomes relatively large as d ~  1, but it still remains relatively small for 
d > ,-, 2. The present asymptotic result for the velocity component Uo is in remarkable agreement 
with the exact solution in the entire region d > 1. Indeed, the asymptotic and "exact" predictions 
for the velocity component Uo agree within 0.03% up to d = 1.5. Even when d = 1.1, the error 
associated with the asymptotic solution is only 4.94%. It can also be noted that the particle 
velocities around and toward the collector surface become larger for the less viscous particle, and 
this effect is a strong function of the particle position relative to the collector surface. The variation 
of the velocity with the separation distance d suggests that a particle approaching the collector 
surface does not immediately respond to the curving of the undisturbed fluid streamlines as they 
divide past the collector, but when the particle comes within range of the hydrodynamic repulsion 
from the collector, it then moves permanently to the outside of the fluid streamline it was initially 
following upstream. 

We now consider a more general case for finite 2. In this case, the leading terms of U r and Uo 
are simply given as 

1 
U~ ~ - - -  • 6d cos 0 [81a] 

1 + 2  

and 

1 1 
U ~  ~ 2 1 - - ~  sin O. [81b] 

Thus, the small particle is transported around the fluid-collector sphere with a velocity of O(1) and 
transported toward the collector surface with a velocity of O(6). In contrast, we have just seen in 
the case of a rigid collector sphere, that the transport motion becomes considerably weaker and 
the velocity components, U0 and U, are only 0(6) and O(62), respectively. A small particle will 
thus remain near a large fluid-collector for a much shorter period than it would near a solid 
collector, but the motion toward the collector surface is also much stronger. 

In order to investigate the consequence of these differences in the relative trajectory, it is 
convenient to derive a trajectory equation that relates the rate of change of the separation distance 
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6 = a [A = 0. I: f o r  x = 0 a n d  - - -  fo r  x = oo; O a n d  A are  the  c o r r e s p o n d i n g  exac t - so lu t i on  resul ts  

(2 = K = '  oo) o f  G o r e n  & O 'Ne i l l  (1971) a n d  Jeff rey & On i sh i  (1984), respect ively.  

d to that of the orientation angle 0 of the small particle, rather than to examine the velocity 
components separately. The trajectory equation may be deduced readily from the asymptotic 
solution [79a, b]. The result is 

Od cos 0 [82] 
O0 =f(d, 2, x; 6) s~nO' 

in which the trajectory parameter f(d, 2, x; d) is defined by 

(1 + 6d) U, sin 0 
f(d, 2, x; 6) = 6 Uo cos 0 [83] 

It is worth pointing out that, owing to the symmetry of the "outer" solution for streaming flow 
past the collector, the trajectories exhibit a fore and aft symmetry with respect to 0 = 90 °, as the 
small particle is transported around the collector surface. 

When the small particle is located at sufficiently large distances from the surface of the collector 
with respect to the characteristic scale of the inner problem, a (but still close to the surface relative 
to the characteristic lengthscale of the outer problem A), the influence of hydrodynamic interactions 
is vanishingly small. In the case of no interaction, 

f(d, 2, x; 6) ~ d [84a] 

for 2 ~ oo, and 

f(d, 2, x; 6) ,~ 2d [84b] 

for finite 2. Thus, a small particle at an initial position near a fluid collector will be transported 
closer to the surface of thefluid-collector than it would from the same initial position in the vicinity 
of a solid-collector. In figure 9, the trajectory function f(d, 2, x; 6) is plotted as a function of the 
separation distance from the surface of the larger collector. Also shown are the corresponding 
exact-solution results of Goren & O'Neill (1971) and Jeffery & Onishi (1984). It can be seen that 
the hydrodynamic repulsion from the surface of the collector is increased as the viscosity of the 
particle is increased. It can also be observed that although the individual force components deviate 
from the corresponding unbounded domain solutions (e.g. see figures 3-6), the deviation of the 
trajectory functionf(d, 2, x; 6) is much smaller and is actually insignificant until d < ~ 3. In fact, 
for d > 3 the slope off(d,  ;t, x; 6) vs d in the plot is about 2 (or 1 for 2 --*~), which corresponds 
exactly to the ease of no interaction. Thus, in practice for sufficiently small 6 ( =  a/A), a particle 
is not expected to deviate from a streamline of the flow until its center is less than 3 particle radii 
from the surface of the collector. Thereafter, its motion can be accurately approximated by the 
method developed in this paper. 

UMF 18/6~Q 
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